Quantitative trait loci for inflorescence development in Arabidopsis thaliana.

نویسندگان

  • Mark C Ungerer
  • Solveig S Halldorsdottir
  • Jennifer L Modliszewski
  • Trudy F C Mackay
  • Michael D Purugganan
چکیده

Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.

Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologi...

متن کامل

QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments.

Quantitative-genetic approaches have offered significant insights into phenotypic evolution. However, quantitative-genetic analyses fail to provide information about the evolutionary relevance of specific loci. One complex and ecologically relevant trait for plants is their resistance to herbivory because natural enemies can impose significant damage. To illustrate the insights of combined mole...

متن کامل

Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems

Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and ...

متن کامل

Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.

The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eigh...

متن کامل

Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci.

Light and temperature are key external factors in the control of Arabidopsis thaliana seed germination and dormancy mechanisms. Perception and response to these stimuli have to ensure that seedling emergence and growth occur at the most advantageous time for correct establishment. Analysis of over 300 Arabidopsis accessions identified 14, from 12 different geographical locations, that were able...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 160 3  شماره 

صفحات  -

تاریخ انتشار 2002